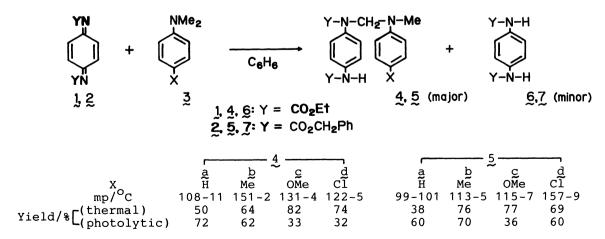
Reactions of p-Benzoquinone Diimine Derivatives with N,N-Dimethylanilines


Yo MIYAGI, * Kazuhiro MARUYAMA, * Mitsunori KUROKAWA, and Ayumi YOSHII

Faculty of Education, Kanazawa University, Kanazawa 920

*Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606

N,N'-Bisalkoxycarbonyl-p-benzoquinone diimine underwent a thermal addition reaction with N,N-dimethylanilines to form an N-C bond between an imino group and an N-methyl group. Upon irradiation the reaction was accerelated. The reaction did not proceed with N-alkyl substituted anilines other than methyl.

We are interested in the chemistry of p-benzoquinone equivalent in comparison with that of the parent compound. The reaction of p-benzoquinone diimine, one of p-benzoquinone equivalents, has little been investigated so far. We wish to report here that N,N'-bisalkoxycarbonyl-p-bezoquinone diimines (1 and 2)²⁾ abstract a hydrogen atom from an N-methyl group of N,N-dimethylanilines³⁾ (3) to give an addition product, N,N'-bisalkoxycarbonyl-N-(N"-methylanilinomethyl)-p-phenylenediamines (4 and 5)⁴⁾ in a good yield with a minor amount of reduced products, N,N-bisalkoxycarbonyl-p-phenylenediamines (6 and 7). The reaction proceeded in the dark, but was accerelated on irradiation. 5)

52 Chemistry Letters, 1988

When a deep purple brown solution of N,N'-bisethoxycarbonyl-p-benzoquinone diimine (1) (0.2 M) and N,N-dimethyl-p-toluidine (3b) (0.4 M) in benzene⁶⁾ was left standing at room temperature in the dark for 48 h, the solution turned to almost colorless and 4b was obtained after usual work-up with column chromatography on silica-gel in a yield of 64% along with 5% of 6. 4b; ¹H NMR (acetone-d₆): 8 1.13 (3H, t, J = 7.0 Hz, MeCH₂), 1.24 (3H, t, J = 7.0 Hz, MeCH₂), 2.18 (3H, s, MeAr), 2.69 (3H, s, NMe), 4.07 (2H, q, J = 7.0 Hz, MeCH₂), 4.14 (2H, q, J = 7.0 Hz, MeCH₂), 5.30 (2H, s, NCH₂N), 6.65 and 6.95 (4H, ABq, J = 8.7 Hz, ArH), 7.01 and 7.50 (4H, ABq, J = 8.7 Hz, ArH), 8.63 (1H, br. s, NH). On irradiation of the same solution (10 ml) by using a 300 W high pressure Hg-arc lamp for 1 h through a Pyrex filter, the solution turned to colorless resulting in the formation of 4b in a yield of 62% along with 3% of 6.

N,N'-Diethyl- and N,N'-dibenzylaniline did not undergo the reaction. The specific hydrogen abstraction from an N-methyl group, but not from an N-ethyl group, was demonstrated by the photolysis of 1 with N-ethyl-N-methyl-p-toluidine (8), which gave 9 (57%, mp 148-151 $^{\rm O}$ C) and 6 (5%) with none of 10.

Y-N-CH₂-N-Et Y-N-H Y-N-H Y-N-H
$$\frac{h\nu}{C_6H_6}$$
 $\frac{h\nu}{C_6H_6}$ $\frac{h\nu}{C_6H_$

The hydrogen abstraction of 1 occurred predominantly from the N-methyl group of N-methyl-N-[$^2\mathrm{H}_3$]-methyl-p-toluidine (11) to give a mixture of 12 and 13 in a yield of 65% with the molar ratio of 4.9. The molar ratio was determined with intensities of $^1\mathrm{H}$ NMR signals due to CH $_2$ of 12 and CH $_3$ of 13.

Even in the photochemical reaction with N-allyl-N-methylaniline ($\frac{14}{14}$), $\frac{1}{1}$ gave 31% of $\frac{15}{15}$ (mp 120-122 $^{\circ}$ C) with 12% of $\frac{6}{15}$. The expected cyclized product $\frac{16}{15}$ was not detected.

Y-N-CH₂-N

Y-N-H

Y-N-H

Y-N-H

$$15$$

Y-N-H

 15

Y-N-H

 16

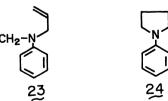
Y-N-H

 16

Y-N-H

 16

On the contrary to the facile reaction of 3b, N,N-dimethyl-o-toluidine (17) was insusceptible to the reaction with 1.


YN
$$\frac{NMe_2}{Me}$$
 $\frac{h\nu}{C_6H_6}$ $\frac{N}{Y-N-H}$ $\frac{NMe}{Me}$ $\frac{O}{Y-N-H}$ $Y=-COE1$

These results suggest the following scheme as the most plausible reaction mechanism, exemplified with the reaction of §. The electon transfer from § to 1 could be accerelated on irradiation. The specific reaction at the N-methyl group may be explained in terms of the intervension of a primary carbanion 21,7 more stable than the secondary carbanion. The electron density of the N atom in 18 would be decreased by conjugation of the lone pair orbital of the N atom with π -orbitals of the benzene ring. The electron deficiency at the N atom would facilitate the deprotonation of the N-methyl group. In 17, such conjugation might be prohibited by steric repulsion between the N-methyl and the ortho-methyl group. Consequently the reaction of 1 with 17 does not proceed.

References

1) Syntheses of a series of N,N'-diacyl-p-benzoquinone diimines and related compounds were reported by R. Adams and W. Reifschneider in Bull. Soc. Chim. Fr., 1958, 23, and literatures cited therein: For the photochemistry of N,N'-diacyl-p-benzoquinone diimines and related compounds, see; I. Baxter and D. W. Cameron, J. Chem. Soc., C, 1968, 1747; I. Baxter and I. A. Mensah, ibid., 1970, 2604.

- 2) $\frac{2}{2}$ was prepared by imitating the method for $\frac{1}{2}$, i.e., oxidation of N,N'-bisbenzyloxycarbonyl-p-phenylenediamine ($\frac{7}{2}$) with Pb(OAc)₄ in boiling 1,2-dichloroethane. Mp 101-103 $^{\circ}$ C; Yield 60%.
- 3) For the photo-reduction of carbonyl compounds by N,N-dimethylaniline and related compounds, see: S. G. Cohen, A. Parola, and G. H. Parsons, Jr., Chem. Rev., 73, 141 (1973); J. D. Simon and K. S. Peters, J. Am. Chem. Soc., 103, 6403 (1981); L. E. Manring and K. S. Peters, ibid., 107, 6452 (1985).
- 4) All new compounds gave satisfactory results in elemental and mass spectroscopic analyses.
- 5) The reaction was carried out without deaeration. In preliminry studies it gave little effects on the reaction.
- 6) The use of acetonitrile instead of benzene as solvent had little effects on the thermal reaction, but induced decomposition of 4 and 5 upon irradiation.
- 7) $\frac{9}{2}$ may be considered to be formed by the radical coupling of $\frac{22}{2}$ with $\frac{20}{2}$. However it is incompatible with the preferential formation of $\frac{15}{2}$ from $\frac{14}{2}$ because the radical intermediate ($\frac{23}{2}$), corresponding to $\frac{22}{2}$, should cyclize to another radical intermediate ($\frac{24}{2}$), the precursor of $\frac{16}{2}$. The dichotomy may be solved by considereing that the C-H bond would be perpendicular to π -orbitals of the benzene ring in the stage of deprotonation ($\frac{19}{2}$) and that the developed carbanion orbital in $\frac{21}{2}$ would retain a similar position until the C-N bond formation.

(Received October 5, 1987)